为了提高教学效果,很多人会不断修改和完善自己的教案,通过充分准备的教案,教师能让课堂内容更加生动有趣,增强学生参与感,九九范本网小编今天就为您带来了植树问题教案8篇,相信一定会对你有所帮助。

植树问题教案篇1
学情分析
由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的'教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。
教学目标
1.认识不封闭曲线路上间隔排列中的简单规律。
2.会解决问题中“两端都栽”情形的植树的实际问题。
教学重难点
重点:间隔排列中的简单规律
难点:两端栽树棵数与间隔数之间的关系。
教学过程
一、口算:(白板出示)
48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=
100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=
二、谈话导入
师:同学们你们知道每年的植树节是几月几日吗?
生:3月12日
师:那你们植过树吗?
生:没有 有
师:那今天老师就来带领大家一起来研究数学上的 “植树问题”吧!
出示课题(ppt):植树问题
准备:
伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。
5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;
?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。
三、探究新知
下面让我们一起来研究,出示课件例题1
(1)理解题意
师:认真读题,你认为哪些词语最关键?
生:全长100米 ?? ? 一边
每隔五米 间隔 ?两端都要栽
问题:一共需要几棵树苗?棵数
(这些同学审题真仔细)
师:那什么叫做每隔五米?两端都要栽?
生:每相邻两棵树之间的间隔距离是5米?
小路的最开始和末尾各栽一棵。
师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?
师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()
(老师重点强调单位名称和答)
师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)
师:那么大家来看黑板上,间隔数和棵树之间有什么联系?
生:棵数=间隔数+1? 多找几个同学回答
师:出示课件 一起读。
师生共同回头看例1,学生在练习本上计算。
师出示课件ppt例1的计算过程
100÷5=20(个)
20+1=21(棵)
答:一共需要21棵小树苗。
(表扬—你真了不起,写的跟答案一模一样,点赞!)
四、巩固练习(ppt呈现)
1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?
2、把“1千米”改成“2千米”
3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?
4、两侧都放呢?
5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树
五、思考题
学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?
六、谈收获
通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?
(师生共同本课内容,下课。)
植树问题教案篇2
教材分析
植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。
教学目标
1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。
2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。
3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。
教学重点:
理解间隔数和棵数之间的关系,建构数学模型。
教学难点:
建立模型及“一一对应思想”的应用。
教学过程
1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。
2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。
第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,
在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。
第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。
第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。
教学反思:
作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。
1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。
2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。
3、探究得太少,自己说得太多。使课堂不够开放。
4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。
植树问题教案篇3
1、重视知识的迁移和转化。
知识迁移法就是利用新旧知识间的联系,启发学生进行新旧知识对照,由旧知识去思考、领会新知识,学会学习的方法。上节课我们已经学习了两端栽树时的间隔数与棵数之间的关系,掌握了两端栽树的解题方法,为本节课的学习打下了基础。学生已经发现了“两端栽树”的规律,这时老师提出如果两端都不栽树,棵数和间隔数之间又会有怎样的规律呢?有了前面学习的基础,学生的思维非常活跃,想表达的欲望也很强烈。通过动手操作,形成知识的迁移和转化,引导学生发现并总结规律,让学生的研究成果被认可,让学生有成就感,从而也增强了学生学习数学的信心。
2、重视独立探究与合作交流相结合。
?数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。”有了前面的学习基础,先放手让学生独立探究,再合作交流。通过简单的例子验证前面的猜测,发现两端都不栽树的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。
课前准备
教师准备ppt课件学生准备直尺教学过程
⊙对比引入,揭示课题
1、出示复习题:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端都栽),一共要栽多少棵树?
(1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)
(2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)
2、引入新课。
师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条60 m长的小路的一旁栽树,每隔3 m栽一棵(两端不栽),一共要栽多少棵树?
(1)想一想,这道题与上一道题相比较,有什么变化?
(2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报)
师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)
设计意图:让学生在熟悉的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。
⊙合作探究,发现规律
1、从简单的数据分析,发现两端不栽的规律。
(1)教师引导学生用画线段、摆图形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的表格。
(2)填写完后在小组内交流一下,你是用什么方法进行验证的?从这个表格中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1)
设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。
2、自主学习,应用规律解决教材107页例2。
(1)课件出示教材107页例2:大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?
①认真读题,分析题意,说一说自己发现的数学信息。 ②独立思考,怎么解决。 ③组内交流,确定方法。(2)交流汇报。
师:请各小组把自己的解决方法介绍给大家,看哪个小组的最合理?①各小组汇报自己的算法。
方法一60÷3=20(棵)20+1=21(棵)方法二60÷3=20(棵)20+1=21(棵)21×2=42(棵)方法三60÷3=20(棵)20-1=19(棵)19×2=38(棵)
②讨论哪种方法最合理。(学生讨论后汇报,重点说明“两旁”要乘2)3、总结规律。
师:从前面的分析中你发现了什么规律?能用一个式子表示出来吗?(根据学生的汇报板书:棵数=间隔数-1或间隔数=棵数+1)师总结:在生活中,有这种规律的数学问题叫做两端不栽的植树问题。
设计意图:如果说生活经验是学习的基础,学生间的合作交流是学习的推动力,那么本环节将“发现规律”与“运用规律”结合起来,通过不完全归纳法验证自己找到的规律,渗透了代数思想。
⊙联系实际,巩固应用
1、教材109页5题。(结合生活实际去分析题意,独立解答)2、教材109页6题。(应用规律进行解答)⊙全课总结
同学们,今天你有哪些收获?在应用规律解决问题的时候需要注意些什么呢?⊙布置作业教材110页8题。
板书设计植树问题(两端不栽)
棵数=间隔数-1或间隔数=棵数+1
60÷3=20(个)20-1=19(棵)19×2=38(棵)
植树问题教案篇4
教学内容:
人教版义务课程标准实验教材四年级(下册)第117---118页例1
教学目标:
1.通过探究发现一条线段上两端要种、一端要种、两端不种三种不同情况植树问题的规律。
2.使学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学过程:
1、课前谈话:
今天来这里上课,有什么不同的感觉?
老师挺高兴的,这么多人,正好做一个公益宣传,请看--
春天,是植树的最佳时间,在座各位朋友,同学,为了我们地球生命,给这些孩子们一个健康的环境,请爱护树木,有钱出钱,有力出力,多多种树!支持的,鼓鼓掌!谢谢!
一、创设情境,出示问题(2分钟)
1、揭示课题(2分钟)
师:你们觉得种树与数学有联系吗?
生:间隔,米数等等问题。
师:种树与数学之间确实有联系,这节课我们就一起在种树问题上研究数学。(课件出示课题:植树问题)
2、出示问题
课件出示问题:同学们在全长1000米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗。
二、化繁为简,解决问题(26分钟)
1、理解信息(2分钟)
师:能看懂吗?告诉我们哪些信息?
生:全长100米,每隔5米等等
师:每隔5米是什么意思?
生:就是两棵树之间的“间隔”;
师:“间隔”这个词听过吗?能举几个例子吗?
比如同学之间,手指之间......都可以看作是间隔。
师:两端要种什么意思?
生:头和尾各要种一棵。
2、形成猜想(1分钟)
师:如果,把这条路的一旁看成一条线段的话,猜猜看,需要几棵树?看谁想得快!
生1:200
生2:201
生3:202
师:三个猜想答案,到底哪个答案才是对的?我们有什么办法知道?
生:验证。
3、化繁为简(4分钟)
师:是的,可以画图,模拟种一种,数一数,就能知道正确的答案了。
师:(课件演示)请看,用这条线段表示这条路。“两端要种”,先在开头种上一棵,然后每隔5米种一棵......大家看,种了多少米了?生:35米
师:才种了35米,一共要种多少米?
生:1000米。
师:这样一棵一棵,一直种到1000米?!同学们,你有什么想法?
生:太累了,太麻烦了,太浪费时间了。
师:英雄所见略同,一棵一棵种到1000米,方法是对的,但确实太麻烦了。其实,像这样比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?
生:想
师:这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究,在研究的过程中发现规律。(课件出示:研究方法:复杂问题--简单问题--发现规律--解决问题)
3、举例验证(5分钟)
师:比如:1000米的路太长了,我们可以先在短一点的路上种一种,看一看,是不是有什么规律,找到规律了我们再来解决复杂的问题。
师:你认为取多少长的路,画图种树,比较好验证呢。
生:5米,10米,15米,20米,25米。
师:老师给你们带来了长短不同的“路”,把它想象成“路”,行吗?你可以把它看作是10米,15米等等,现在请你用笔,独立在这些“路边”种树,并列出算式,把你的发现也写在纸上,开始。(学生独立活动,2分钟后,)
师:把自己的发现,轻轻地告诉小组里的同学,并做好向全班同学汇报。
4、反馈交流(如何操作还是一个问题)(5分钟)
请一个小组把自己的研究成果展示在黑板上。
师:请你代表这组同学,把研究的过程,和得到的规律,向全班同学解释一下。
师生互动
师:这空在这里是怎么回事?
生:间隔5米;
师:为什么是空了4个间隔?
生:20米里正好有4个5米;
师:怎么算出来的?
生:20除以5等于4
师:4个间隔数,空了4次
师:这样种(板书:两端种),可以吗?)
5、揭示规律(0.5分)
师:运用化繁为简的解决策略,同学们发现了植树问题中,非常重要的一个规律,那就是:(板书:两端要种:棵树=间隔数+1)
6、解决问题(3分钟)
师:现在你能运用这个规律,解决刚才复杂的问题吗?请独立列出算式。然后向同座说一说解决思路。(请一位学生板演,并说解题思路,老师追问:这里的200指什么,为什么要减1。)
师:(指着猜想答案)当时你是怎么猜想到200棵的。
师:虽然你猜测的答案是错的,但你敢猜想,证明你有学数学的胆量,正因为出现了不同的答案,才让我们走上探索之路,所以,我们得谢谢你!
7、巩固练习(6分)
(1)从王村到李村一共设有8根电线杆,相邻两根的距离平均是200米。王村到李村大约有多远
(2)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
三、再度猜想,打通联系(10)
1、过渡设疑
2、形成猜想
3、验证猜想
4、得出结论
5、打通联系
四、拓展选择,辨别类型(3分钟)
师:其实植树问题并不只是与植树有关,在我们的生活中,还有许多现象与植树问题很相似。
(1)同学们排队跑步,队伍长4米,每两人之间的距离是1米,这队学生有多少人?
1)4÷1+1=5(人)2)4÷1-1=3(人)3)4÷1=4(人)
(2)一根10米长的木条,工人叔叔按每段2米长的标准来锯开它,需要锯几次才能完成任务?
1)10÷2+1=6(次)2)10÷2-1=4(次)3)10÷2=5(次)
(3)5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米,街道一边一共有几个车站?
1)12÷1+1=22(个)2)12÷1=20(个)3)12÷1-1=9(个)
五、丰富背景,遗留问题。(1.5分钟)
师:其实,同学们的收获才刚刚开始。多个点等距离排列成一条直的线,点的数量与间隔数之间有一定规律;如果,多个点等距离排列成一个方阵;如果,多个点等距离排列成一个圈,或等距离排列成其它形状,这里面蕴含着更深奥的数学,期待同学们去发现!
植树问题教案篇5
教前分析:
1、教材分析:教材选取了在学校门前的一条小路一旁植树的素材,探索棵树和间隔数的关系,引导学生发现规律,有利于学生感受到数学来源于生活,从而产生亲切感,促使学生借助已有的生活经验自主探索规律。教材在编写时,不仅关注所选素材,而且在解决问题的方法上也注重了学生已有生活经验的利用。在学生对生活实际理解的基础上,感受到在一条直线上植树时,会有三种不同的情况:两端都栽、一端不载、两端都不栽;并在生活经验的基础上,借助线段图理解。
2、学情分析:数学学习的过程实际上就是一个对有关素材的规律理解、把握,并形成认识的过程。间隔现象的规律是生活中普遍存在的,学生都接触过,而且难度不大,有利于学生自主经历探究规律的过程,体会探究的方法,提高思维水平,感受数学的价值。但是借助一一对应的方法理解间隔数+1=棵数的过程中发现学生难以理解。
3、自我剖析:自己教龄3年,曾任教五年级数学和三年级数学。今年第一次任教一年级教学。从事高年级教学时发现基础薄弱学生存在的问题,因此更加重视一年级学生的基础教学。理解算理帮助学生内化尤为重要,特别关注计算能力培养。个人对数学学科比较热爱,喜欢钻研,积极参加各级各类数学教研活动和听评课活动。
教学目标:
1、知识目标:经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。
2、能力目标:会灵活应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。感悟寻找规律,构建数学模型是解决实际问题的重要方法之一。
3、情感目标:培养学生保护环境的意识。
教学要点:
1、重点:理解种树棵树与间隔数之间的关系。
2、难点:灵活应用发现的规律解决一些相关的实际问题。
学习方法:
动手操作,合作交流
教学具准备:
课件、剪纸(小路、小树、房子)、板书用的字条
课前谈话:
人有两件宝,双手和大脑。双手会做工,大脑会思考。希望这节课同学们开动大脑积极思考,勇敢举手、大胆发言。
一、创设情境,导入新课
师:同学们喜欢猜谜语吗?老师出一个谜语,考考大家。
两个小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。你们猜出来了吗?
[设计意图:“猜谜”是中国传统文化之一,这里采用猜谜语不仅能够引导学生主动思考,还能调动学生学习的积极性,为接下来的知识学习打下良好的基础]
师:同学们真聪明。
师:我们的手不仅能写会算,在这其中还隐藏着许多的数学知识。
请同学们伸出你的左手张开五指,数数手指之间有几个空?
生答:4个,这个空我们在数学中把它叫做间隔。
师:老师要考考同学们的眼力。四根手指之间有几个间隔?
生答3个
师:两根手指有几个间隔?
生答:1
师:同学们的小眼睛真亮,反应真快!接下来同学们活动一下你的小手,请同学们伸出你的左手,老师说你来做。2个间隔,4个间隔,三个间隔。
师:同学们反应真迅速!其实在生活中和间隔随处可见,同学们能不能举出例子呀!
师:你有一双善于发现的眼睛。
师:老师也收集了一些,请看大屏幕。
[设计意图:引出“间隔”,将抽象的概念具体化。同时渗透了间隔与间隔数之间的关系。让学生将数学与生活紧密的联系在一起。]
师:在数学中,把和间隔有关的问题称为植树问题。
师:今天这节课我们就来一起研究植树问题,(板书课题植树问题)。同学们有信心学好吗?
二、探究新知
光明小学为了美化校园环境,计划在一条长20米的小路一边植树。想请同学们当小设计师。我们一起去看看吧!
[设计意图:在活动中学生实现了参与环境保护的愿望,提高了环保意识,增强了热爱环境的情感;同时也深化了数学课本上有关知识的学习]
一)动手设计并交流
1、请同学们仔细观察,你知道了哪些重要的数学信息和数学问题?
请你说说看。
生答:长20米的小路,一边、每隔5米
2、我们的小路有几边呀!这条路的全长20米,
每隔五米栽一棵你是怎么理解的?也就是相邻两棵树之间间隔长度是多少?这个五米我们就把它叫做间隔的长度,我们也用一个词叫做间隔长。
3、同学们大胆猜一猜这条小路上,应该需要种几棵树呀!
同学们敢于猜想就向成功迈出了一大步。
4、我们的数学是一个严谨的.学科,在数学上许多结论的得出都是通过数学家经过大量的验证才得出来的。
刚才我们才想出这么多到底哪个答案是正确的呢?
下面就请同学们动手设计画一画来验证你的猜想。请同学们以小组为单位进行合作探究。动手之前我们一起来看看合作要求。
要求:
1、用一条线段代表20米的小路。
用最直观、最简洁的图形表示树,把你们的想法动手画一画。
2、再试一试把你的想法通过算式表示出来。
3、想一想间隔的个数和树的棵数有什么关系?
同学们动手画一画,看一看到底需要多少棵?
[设计意图:让学生动手设计调动学生学习的积极性,同时让学生在画一画的过程中潜移默化的运用一一对应的数学思想。这个环节具有开放性,不局限学生的思维]
画完以后观察一下树的棵数与间隔数有什么关系?
2、交流展示设计方案
哪个小组想展示一下你们的合作成果?
二)探究两端都栽、一端不栽和两端不栽
师:仔细观察,我们刚才得到的。这三种设计方案有什么相同的地方。有什么不同的地方。
[设计意图:学生在观察三种设计方案中相同点和不同点时会发现棵数和间隔数之间有着密切的联系。而且也会发现两端都栽、只栽一端、两端都不栽三种情况]
师:同学们的眼睛很亮。很快就发现了相同点和不同点。由此我们知道了植树关键是得知道有几个间隔,也就是先求间隔数。然后再看需要栽树。
1、看第一种设计方案,我们给她起个名字叫两端都栽,观察棵数和间隔数之间有什么关系呢!可以和同桌两说一说。我们能不能用一个等式来表示刚才我们所发现的规律呢!
间隔数+1=棵数
棵数-1=间隔数
归纳:先求:总长÷间隔长=间隔数
再求棵数=间隔数+1
同学们的发现太了不起了!
2、第二种设计方案谁想给它起个名字?
生答:一端不栽或只栽一端
名字起的很有特点。
我们再来观察棵数和间隔数之间有什么关系?
谁想第一个说?生答:观察真仔细。老师给你点个赞!
3、这个咱一起给它起个名字吧!
这时候棵数和间隔数之间有什么关系?
师:你的发现太有价值啦!
看来刚才同学们的猜测都正确。下面我们再来一起欣赏同学们刚才的几种设计。
学生展示总结发现
两端都栽:棵数=间隔数+1
两端不栽:棵数=间隔数—1
只栽一端:棵数=间隔数
为了便于同学们记住我们的重大发现,老师送给大家一首儿歌。
4、植树问题好解决
知道间隔是关键
两端都栽间加1
两端不栽间减1
只栽一端与间同
[设计意图:根据低年级儿童的特点,儿歌琅琅上口更适合学生。学生喜欢读喜欢记。调动学生的学习积极性]
运用我们发现的规律不仅可以解决植树问题,还可以解决生活中的其他间隔问题如楼梯问题、钟表问题、队列问题、公交站问题、锯木头问题等等。接着我们走进生活,运用我们所学知识解决生活中的实际问题。
三、巩固练习
一)准备好接受挑战了吗?同学们请看题
1、一条走廊长50米,每隔10米放一盆花,一共需要放多少盆花?
师:真是会思考的孩子。
2、在两栋房子间有一条长100米的小路,如图在两栋房子间每隔10米种一棵树,共种多少棵树?(指生到黑板板演)
师:这道题我们首先看属于哪种情况?
生:两端都不栽,间隔数-1=棵数
师:你是个会学习的孩子,表现棒极了!
3、园林设计师听说咱班同学特别有想法,想请同学们帮忙。大显身手的机会来了。请看大屏幕。
为了保护一棵古树,园林处要为它做一个长30米的圆形防护栏。如果每隔2米打一个桩,一共需要打多少个桩?
首先同学想想他应该是这三种情况中的哪一种?老师这里带了一个小模型帮助同学理解。眼睛不要眨仔细观察,变变变。我把圆形防护栏给她拉直了。
老师用一种很巧妙的方法叫作化曲为直。我们可以把这个圆形护栏给它拉直。这时你发现它是只栽一端的情况。所以间隔数=棵数
师:同学们很会思考啊!
4、拓展延伸
刚才的问题没有难倒大家,要打木桩我们需要准备合适长度的木头。看,出示问题:
把一根木头锯成5段,每锯断一次需要6分钟,锯完这根木头一共需要多少分钟?
在解决这个问题时我们可以借助线段图。把答案写练习本上。
四、课堂小结
同学们,愉快的一节课马上就要结束了。你们学会今天讲的植树问题了吗?在解决这类问题的时候要注意什么呢?把数学知识应用到实际的生活中是不是很有意思?
生活中处处有数学,希望同学们做生活中的有心人。
[设计意图:渗透好环保,进而让学生点滴积累环保知识,为培养学生爱护环境、热爱大自然的品质而做些添砖加瓦的工作]
五、课后作业:
孙老师从家到学校,乘公交车一共有5个站点,每相邻两个站点之间的距离平均约1千米,你知道孙老师家到学校大约有多少千米吗?
植树问题教案篇6
教学内容:
人教版五年级上册数学第七单元数学广角植树问题
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题
教学难点:
理解“间距数+1=棵数,棵数-1=间距数
教学过程:
一、设计情景、引入课题
1、教学“间隔”的含义
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
(课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
3、理解间隔数,引入课题。
在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)
二、探索新知,探究规律
1、出示招聘启事
在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。
2、出示例题,理解题意:
师:(课件出示例题。)
师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?
(课件解释关键词语,加深学生理解)
师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。
3、出示合作要求。
(1)教师讲解小组合作要求。
(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可以用不同的形式表达)
(3)教师巡视,指导学生小组合作。
(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。
(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。
4、以小组为单位探究棵数与间隔数间的关系:
(1)数一数:数出棵数和间隔数。
(2)比一比:比较出棵数和间隔数之间的规律。
两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。
只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。
两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。
三、课堂小结、反馈练习
1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
2、广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?
植树问题教案篇7
学习目标:
1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。
2.使学生经历和体验复杂问题简单化的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。
学习过程:
一、知识铺垫
马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?
1. 你都知道了些什么?
2. 一共要栽多少棵树?你是怎样想的。
二、自主探究
大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?
1. 你都知道了 。
2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!
总结
植树问题
总长( )=( )
两 端 栽: 棵 数=( ) +1
一 端 栽: 棵 数=( )
两端不栽: 棵 数=( ) -1
三、课堂达标
1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?
2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?
3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?
植树问题教案篇8
教学目标
1.初步知道和掌握在一条线段上植树问题的规律,会正确解决类似的数学问题。引导学生用画线段图的方法分析理解题意,初步培养学生解决植树问题的有关能力。
2.经历用一一对应的数学思想解决实际问题的过程,体验"复杂问题简单化"的策略及分析解决问题的方法。初步培养学生的探究意识和能力。
3.体会植树问题在日常生活中的广泛应用,激发学生学习情感与求知欲望,渗透对应思想,并对学生进行热爱劳动,保护环境的。
教学重、难点
理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。
教学过程
一、创设情境,导入新课,渗透对应思想
师:同学们,认得这是什么吗?
师:你能按照一定的顺序说说它是由什么组成的吗?
师:你们知道这样的排列叫什么排列吗?
师:一片面包间隔一片肉,在数学上,我们把这种排列叫"间隔排列"。
师:下面有个挑战性的问题。刘老师听说最近有一个面包店要做一块全世界最大的三明治,供几百人吃一餐。面包片,肉片按以上间隔排列,正好排完,不用数,你能判断面包片与肉片谁的数量多?
师:为什么你认为面包片多?
师:同学们说的真棒!因为前面都是一一对应,最后一个是面包,所以面包片多。今天我们就用"一一对应"的思想来研究植树问题。
二、自主学习,合作探究,建立数学模型
??探究植树问题的三种情况
师:几个月前,我们福州新修建了一条步行街,即台江步行街。
师:这么美的步行街在建设初期只是一条光秃秃的道路,怎样美化它呢?可以在街旁种树!瞧!
(课件出示题目:给1000米长的台江步行街一边植树,每隔5米栽一棵,需要准备多少棵树?)
师:从图上中你得到什么信息?要解决什么问题?
请你先猜一猜。
?设计意图:猜测是一种培养学生推理能力的好方法。这时学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生先进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心,
生反馈:
方法一:1000÷5=200(棵)
方法二:1000÷5=200(棵)200+1=201(棵)
师:到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?我们用这条线段表示1000米,先在这儿种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去…
师:大家看,已经种了多少米?(40米)这么长时间才种了40米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)
?设计意图:通过创设植树的现实问题情境,提出"共需多少棵树苗的问题"。学生在解答的过程中出现了几种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)】
师:刘老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的'研究方法,大家想知道吗?
师:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。(板书:从简单入手)大家想不想用这种方法试一试?
师:"从简单入手"也是解决问题的一种策略。"1000米"数据比较大,比较复杂,你想从简单的想起,那么你想把它先看成多少?
师:大家想的都不错,那么我们就从15米想起吧!现在我们把这条15米长的路用一条线段表示,每隔5米栽一棵树,有几种植树方案呢?请你用自己喜欢的图案表示树,在线段图中设计出各种不同的植树方案,并说明设计理由?然后在小组内交流。
?设计意图:创设问题情境,放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了学生自主探索、小组合作的意识,充分调动学生学习的积极性,把学习的主动权交给了学生。教学形式上,重视学生的独立探索和合作交流的有机结合,课堂中让学生根据自己的体验,用自己的思维方式去探究,去发现,去再创造,使每个学生都有一块属于自己思维的开拓区域。从学生已有的生活经验出发,让学生自由设计,然后引导学生自主探索、合作交流,得出"两端要栽:棵数=间隔数+1",体现了教学方法的开放性。】
1.师:现在我们一起来研究同学们设计的方案。
(出示四种方案的线段图)
师:四种方案都符合设计的要求,谁能说说它们不同的地方在哪里?
师:请你具体地说一说?
师:这样就把树与路,怎么样?
师:很好,用一一对应的思想研究植树方案,第二种呢?
2.师:同学们真聪明,找到了这几种方案的不同之处。师:同学们真聪明,找到了这几种方案的不同之处,那它们之间有没什么相同的地方呢?
师:每两棵树之间的距离5米就叫做"间距"。
师:谁来指一指,数一数,第一种方案有几个"间距"?
师:有3个间距,我们就说它的"间隔数"是3。
3.师:观察这三种方案,你发现棵数和间隔数之间有什么关系?
⑴师:两端都种的情况,你们是怎么发现棵数比间隔数多1的呢?
师:有没有其他办法?
生:一棵树对应一个间隔,一棵树对应一个间隔,最后会多1棵树。
师:刚才同学们用的是"一一对应"的数学思想来解决问题。
⑵师:只种一端的这种方案,怎么用一一对应的思想解决棵数和间隔数的关系?
⑶师:两端都不种时为什么棵数比间隔数少1呢?
??探究两端都种的情况
师:今天由于时间关系,我们先研究两端都种的情况。那么这种情况,间隔数和棵树有什么关系呢?
师:刚才我们从简单的想起,知道路长15米,间距是5米,你们能不能用计算的方法,求出棵数呢?独立思考,试着算一算。
师:15米要准备4棵,那么1000米的路,两端都种要准备多少棵树?你会解决吗?试试看。(课件加上"两端都种")
三、课堂小结
师:今天这节课你感受最深的是什么?
师:刘老师也找了些生活中的"植树问题"。如:上楼梯,锯木头,钟声等。(课件展示)你还能想出生活中的哪些地方用到"植树问题"吗?
师:"植树问题"在生活中应用比较广泛,下节课我们继续学习。
以上就是数学网小编分享四年级《植树问题》数学教案的全部内容,教材中的每一个问题,每一个环节,都有教师依据学生学习的实际和教材的实际进行有针对性的设置,希望大家喜欢!
植树问题教案8篇相关文章: