教案应包含多种教学策略,以适应不同的学习情境,教案的结构应简洁明了,以便教师快速找到所需信息,九九范本网小编今天就为您带来了小学数学比和比例的教案5篇,相信一定会对你有所帮助。

小学数学比和比例的教案篇1
教学目标:
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
教学重点:
引导学生理解反比例的意义。
教学难点:
利用反比例的意义,正确判断两种量是否成反比例。
教学过程:
一、复习铺垫
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
二、自主探究
(一)教学例1
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
2.这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?
教师板书:零件总数
每小时加工数×加工时间=零件总数
3.小结
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
(二)教学例2
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数
(2)装订的本数是怎样随着每本的张数变化的.?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
3.如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?
教师板书: xy =k(一定)
三、课堂小结
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
四、课堂练习
完成教材43页做一做
五、课后作业
练习七6、7、8、9题。
六、板书设计
成反比例的量 xy=k(一定)
每小时加工数×加工时间=零件总数(一定)
每本页数×装订本数=纸的总页数(一定)
小学数学比和比例的教案篇2
教学目标:
1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。
3.进一步体会数学与日常生活的密切联系。
教学重点:目标1、2。
教学难点:目标2。
教学过程:
活动一、创设情境,引入新知
笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。
1.出示平面图。
2.观察图,说说从图中知道了什么?
3.思考:比例尺1:100是什么意思?
(1)独立思考。
(2)同伴交流。
(3)汇报。
得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的.线段表示实际100厘米。
4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的面积是多少平方米?
(1)学生四人小组合作完成。
(2)汇报交流。
强调:必须先求出实际的长和宽,然后再算出实际的面积。
5.笑笑家的总面积是多少平方米?
(1)学生独立完成。
(2)集体订正。
6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。
(1)理解题意。
(2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。
(3)进行计算。
7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。
(1)图上1厘米表示的实际距离是多少厘米?
(2)她画的平面图的比例尺是多少?
活动二、试一试
1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。
(1)理解题意,独立思考。
(2)交流自己的想法。
(3)进行计算。
活动三、练一练
1.完成32页第2题。
(1)独立完成。
(2)汇报交流。
(3)提出问题。
2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。
(1)独立计算。
(2)汇报,全班交流。
(3)说说自己的想法。
活动四、实践活动
1.找一张中国地图,量一量,算一算。
(1)量出北京和台北之间的距离是( )厘米,它们之间的实际距离大约是( )千米。
(2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。
2.找一张中国地图,用▲表出你家乡的大致位置。
(1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。
(2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。
3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。
学生可以在家长的帮助下,在家里完成。
课后小结:说说你今天的收获和问题。
小学数学比和比例的教案篇3
一、教学内容:
人教版六年级下册《比例尺》。
二、教学目标:
1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。
三、教学重点:
理解比例尺的意义。
四、教学难点:
掌握求比例尺的方法,并能熟练解答比例尺的有关问题。
五、教法要素:
1、已有的知识和经验:
﹙1﹚比的意义
﹙2﹚化简比
2、原型:
﹙1﹚分别画出5厘米和10米长的线段。
﹙2﹚插图内容:中国地图、机器零件图。
﹙3﹚例1将线段比例尺改写成数值比例尺。
3、探究的问题:
﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?
﹙2﹚线段比例尺怎样改写成数值比例尺?
﹙3﹚怎样求一幅图的比例尺?
六、教学过程:
(一)情境导入
1脑筋急转弯
北京到上海的距离是1200千米,可是一只蚂蚁从北京到上海只用5秒钟,这是为什么?
生:它是在地图上爬的
出示一幅中国地图引出图上距离和实际距离。
2、让学生画一条长5厘米的`线段。﹙学生很快画完﹚
3、再画一条长10米的线段。﹙学生迟疑﹚
师:你有什么疑问吗?
生:本子没有那么长,画不出来。
师:那该怎么办呢?
小组讨论,然后在练习本上画一画
组织汇报交流,让学生说说自己画的线段是多少厘米,它是把10米长的线段进行怎样变化得到的。
师:由于你们的标准不一样,因此大家画的线段长度不一样,所以画图时应该有个统一的标准,这个标准就叫比例尺,今天我们就来研究比例尺的内容,板书:比例尺
二)探究与解决
1、探究比例尺的意义
(1)阅读课本53页上面的内容
(2)你认为什么叫比例尺?
让生说出自己画图的标准即比例尺,并分别说出1:100和1:200的意思。再用自己的语言叙述什么叫比例尺。
师:一幅图的图上距离与实际距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺﹙或分数形式的比例尺﹚
2、认识数值比例尺和线段比例尺
师:有关比例尺的知识在生活中有很多的用处。
﹙1﹚出示:标有数值比例尺的中国地图
让生说出比例尺1:100000000的意思。﹙当学生回答出图上1厘米表示实际距离100000000厘米。师可引导学生说出也就是图上1厘米表示实际距离1000千米。﹚
﹙2﹚出示:机器零件图
说出图中的2:1表示什么意思。﹙图上2厘米表示实际距离1厘米,由于机器零件较小,需要把实际尺寸扩大。﹚
师:像1:100、1:100000000、2:1…这些比例尺有个特点,前项或后项都是1。为什么不是2或3或其他数呢?﹙生…﹚为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺我们把它叫做数值比例尺。
﹙3﹚出示:标有线段比例尺的北京市地图
让生讨论线段比例尺表示的意思,并介绍线段比例尺。
过渡:那怎样将线段比例尺改写成数值比例尺呢?
3、线段比例尺改写成数值比例尺
学习例1:小组的同学互相讨论尝试改写。师板书例1。
师:谁能说说改写时要注意什么?
师生共同小结:
(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0
比例尺是一个比,不带单位名称
(3)比的前项为1。
过渡:通过刚才的学习,我们认识了什么叫比例尺,还知道了有数值比例尺和线段比例尺,那你知道怎么算比例尺吗?
4、完成53页“做一做”
学生试做后,小组内交流做法。
全班交流,总结方法。﹙首先依据比例尺的意义确定比例尺的前项和后项,写出比,图上距离与实际距离的位置不要写错;前后项单位名称要统一;最后化简比,变成前项是1的比。﹚
(三)训练与应用
1、我会判断
﹙1﹚比例尺是一种测量长度的尺子。﹙﹚
﹙2﹚一幅图的比例尺是80:1,表示把实际距离扩大80倍。﹙﹚
﹙3﹚比例尺的后项一定比前项大。﹙﹚
2、完成练习十第1、2题
学生完成后,让生说一说是怎样想的。
3、完成练习十第3题
学生完成后,让生说说自己的想法。并观察这个比例尺是将实际距离扩大。
(四)小结与提高
引导学生谈谈本节课的收获并对自己的学习表现进行评价。
小学数学比和比例的教案篇4
教学目标:
1、让学生在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义,并且知道什么是图上距离,什么是实际距离。
3、运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
4、学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:
1、正确理解比例尺的含义。
2、利用比例尺的知识,解决生活中的实际问题。
教学难点:
运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。
教学准备:
多媒体课件,地图,简易建筑图纸。
教学过程:
一、激趣导入
1、教师:今天,老师要测试一下同学们的反应能力,你们准备好了吗?请看大屏幕?(课件出示“单位转换”)
2、学生集体回答。(个别难题,教师引导计算,并且提问学生:你是怎么想的?注意学生的鼓励表扬)
3、创设情境
(1)师:今天我们班的两位同学产生了一场争论,你们想知道是怎么回事吗?
(2)学生情景表演。(师播放动画)
(3)通过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?
生:按照一定的比例缩小。
(4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?
生1:用8厘米表示80米,用6厘米表示60米。(板书)
(5)其他同学认为他说的对吗?我们一起来表扬他。
4、师:现在,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的距离?(80米和60米)
5、小结:我们把画在图上的`距离叫图上距离,把实际生活中的距离叫实际距离。(板书)
6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一起来看看他们的比是多少?
(引导:比的前项和后项单位要统一,再划成最简整数比)
板书:8cm:80m=8cm:8000cm=1:1000
7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000
8、师:这里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)
9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们今天要学习的就是比例尺。(板书:比例尺)
二、探索发现
1、揭示比例尺的意义。(课件播放)
教师补充板书:图上距离/实际距离=比例尺
公式转换:实际距离=图上距离÷比例尺
(板书) 图上距离=实际距离×比例尺
2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100 说明用图上距离1cm表示实际距离100cm。
3、小组比赛,说一说:以上比例尺分别说明了什么意思?
举例:1:200说明用图上距离1cm表示实际距离200cm。
(分组回答)
4、师:仔细观察,这些比例尺有什么相同之处?
生:比例尺的前项都是“1”。
师:为什么要写成前项是“1”,而不写成前项是别的数字呢?
生:这样可以清楚的看出图上距离代表实际距离多少厘米。
师:真了不起,真是一针见血。
5、师:同学们现在看到的是老师的房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)
生1:父母卧室……
生2:比例尺1:100.
6、师:你观察真仔细!比例尺1:100是什么意思?
(学生讨论、汇报,教师引导)
学生1:图上 1厘米长的线段表示实际100厘米。
学生2:表示实际距离是图上距离的100倍。
7、运用知识,尝试解决问题
教师:现在请大家量一量,图中我的卧室,长是( )厘米,宽是( )厘米。()
算一算我的卧室,实际的长是( )米,宽是( )米,面积是( )平方米。(生汇报,教师在课件上记录)
8、说一说:你是怎么算的?(板书:黑板左侧)
生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米
生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米
生3:卧室的实际面积是5×4=20平方米
9、师:谁能算一算我家的总面积是多少?10×11=110平方米
三、解决问题、巩固提高
1、师:我打算在父母卧室北墙正中开一扇宽为2米的窗户,在平面图上应该画多长距离呢?
2、引导计算
(1)题目中,2米是什么距离?(实际距离)比例尺是多少?(1:100)
(2)根据实际距离和比例尺,我们应该如何计算图上距离?
板书:2米=200厘米 200×1/100=2(厘米)
3、师:笑笑在本子上用8厘米表示了我的卧室的长,图上1厘米表示了实际距离多少厘米?你是怎么算的?
板书:4米=400厘米 400÷8=50(厘米)
4、她画的平面图的比例尺是多少?(1:50)
5、(课件出示:北京到上海的情景)
师:题目中,已知哪些条件?(图上距离6厘米,比例尺1/17000000)
师:根据以上条件,北京到上海的实际距离是多少?
(生独立计算,集体回报)
四、总结深化、拓展延伸
1、师:今天我们主要学习并认识了比例尺,知道图上距离与实际距离的比叫比例尺。今天所学的比例尺主要是把大的距离缩小,我们可以把它叫做缩小比例尺,为了计算方便,前项一般为1。但是有时我们也需要把一些小的东西放大,因此我们把这样的比例尺叫做放大比例尺,后项一般为1。
2、师:通过今天的学习,你们还学会了哪些?
板书设计:
比例尺
图上距离:实际距离=比例尺 …… 2米=200厘米
实际长…… 8cm:80m=8cm:8000cm=1:1000 200×1/100=2(厘米)
实际宽…… 6cm:60m=6cm:6000cm=1:1000 4米=400厘米
图上距离=比例尺×实际距离 400÷8=50(厘米)
实际距离=图上距离÷比例尺 答:比例尺1:50
小学数学比和比例的教案篇5
教学内容:比例的意义、基本性质,比例各部分名称,组比例。
教学目标:
1. 使学生理解比例的意义,认识比例各部分的名称。
2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。
教学重点:比例的意义和基本性质。
教学难点:理解比例的基本性质。
教学过程:
一、 复习
1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。
2、 求下面各比的比值,哪些比的'比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。
1、 比例的意义
出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时) 2 5
路程(千米) 80 200
从上不中可以看到,这辆汽车:
第一次所行台的路程和时间的比是____;
第二次所行驶的路程和时间的比是____;
这两个比的比值各是多少?它们有什么关系?
(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。
板书:80:2=200:5 或 =
师:这样的式子,我们给它一个名字叫做比例。
(2) 口答
A、把复习第2题中两个比值相等的比用等号连起来。
B、用等号连接起来的式子叫做什么?
C、根据刚才的回答,你能说出什么叫比例吗?
(3) 小结。
A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。
B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。
(4) 练习,课本第10页做一做。
2、 比例的基本性质。
(1) 比例各部分的名称。
引导学生观察黑板上的例题:80:2=200:5
并自学课本
提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?
(2) 说出下面各比例的外项和内项?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
(3) 计算:上面比例中的外项积与内项积。
(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?
师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?
(5)你能得出什么结论?
三、 巩固练习
1、 完成第2页的做一做。
2、 完成第3页的做一做第1题。
四、 总结
1、 比例的意义和基本性质是什么?
2、 怎样判断两个比能否组成比例?
五、 作业
1、 完成练习四的第1-3题。
小学数学比和比例的教案5篇相关文章: